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J. Phys. A: Math. Gen 16 (1983) 1035-1039. Printed in Great Britain 

Correlation equalities and some upper bounds for the 
critical temperature of Ising spin systems? 

F C Sa Barreto and M L O’Carroll 
Departamento de Fisica-ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, 
Minas Gerais, B r a d  

Received 16 July 1982 

Abstract. Starting from correlation identities for king systems and using Griffith’s and 
Newman’s inequalities, upper bounds for the critical temperature are obtained which 
improve mean-field results. 

Upper bounds F, for the critical temperature T, for king and multi-component spin 
systems have been obtained by showing (for T>T,)  the exponential decay of the 
two-point function (Fisher 1967, Simon 1980, Brydges et a1 1982). Series expansions 
in t anhpJ  and in pJ are analysed by Fisher (1967) and Brydges et a1 (1982) 
respectively, and spin correlation inequalities and their iteration are used by Brydges 
er af (1982), Lieb (1980) and Simon (1980). The inequality used by Lieb (1980) and 
its iteration can, in principle, be used to obtain a sequence of temperatures that 
converge to the critical temperature. However, as pointed out by Simon (1980), 
computation of successively better approximations to T, require increasingly lengthier 
computations. 

In this short note, for completeness, we give a simple proof of the mean-field 
bound for T,. We then improve this bound for the classical Ising model as follows: 
starting from a two-point correlation function identity (Callen’s identity) (Callen 
1963) using Griffith’s 1st and 2nd inequalities (Griffith I, 11) (see Glimm and Jaffe 
198 1) and Newman’s inequalities (Newman 1975) we establish the inequality 

for the two-point function (SoSJ which when iterated (see Simon 1980) implies 
exponential decay for T > Tc. The upper bounds we obtain are lower than those 
obtained by Simon (1980) and Brydges er a1 (1982). 

We first give a simple proof of the mean-field upper bound for T,. We write the 
Hamiltonian for a classical lattice spin system as H = -J SiS, where J > 0 and 
the sum is over nearest-neighbour spins on the lattice A with the point 0 E A. We 
define the thermal average (.  . .) by 

where each Si is restricted by ISi( = 1. We let v denote 
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the lattice A and let (.  . . ) A ,  O C A  < 1 denote (. . .) with H replaced by HA = 
-JA Xlil=l S O S ~  - J Z i , i + ~  SiS+ T ,  is defined by 

T,=[inf T : V T ' >  T3m(T ' )>O and C ( T ' ) > O + ( S O S I ) S C ( T ' )  exp(-m(T')Il\)]. 

We have 

Theorem 1. T,=p,' <J-'u-'. 

Proof. Integrating d(SoSl)A/dA between A = 0 and A = 1 we obtain 
1 

(sosf)  = \o dA pJ 1 ((siS1sj)A - (S0Sr)A (S0sj)A) 
l i l= l  

where we have used Griffith I (11) in the 1st (2nd) inequality of (2). Iteration of (2)  
(see Simon 1980) and noticing that Xlil=l = U completes the proof. 

Remark. Using Griffith's 3rd inequality, PJ can be replaced by tanhpJ  in (2) (see 
Simon 1980 and Brydges et ai 1982). 

We now recall Callen's identity (Callen 1963) and its proof for the two-point 
function. 

Remark. Callen's identity can be generalised to include magnetic fields and more 
general functions, i.e. can replace SI by f({Si}) where SO & {Si} and Ei = -Xlj l= l  JSj by 
Ej = -XIj l= i  JSj + h. 

Proof. Carrying out the sum over So in the numerator of (SOSI)  we obtain 

m,n#O 

where we have noted that 

and that SI 2 sinh(PJ Z l i l = l  S j )  is independent of So. 
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Specialising Callen’s theorem to the case of a dimension d = 2, 3 cubic lattice we 
obtain correlation function identities as 

B = $tanh(4pJ) - 2 tanh(2PJ)I. 

(b) For d = 3 

( S O S I )  = A (Sisi) + B  C (SiS$kSl) + C C ( s i s $ k s m s n s l )  ( 5 )  
i i < j<k  i < j < k < m < n  

where 

A = (1/2’)[tanh(6PJ) + 4  tanh(4PJ) + 5 tanh(2PJ)I 

B = (1/2’)[tanh(6@J) - 3 tanh(2PJ)I 

C = (1/2’)[tanh(6PJ) -4  tanh(4PJ) + 5 tanh(2PJ)I. 

The sums over i, j ,  k, m,  n are over the nearest neighbours of 0 to which we have 
given a numerical ordering. 

Proof. Letting Eo = JS,, Callen’s identity can be written as 

(SOSI)  = (Sl exp(PEoD) tanh x lX=o)  

where D is the differentiation operator d/dx or as 

( S O S I )  = (St n [exp(PJSjD)I) tanh x I x  =o. 
/11=1 

Using S? = 1 we have 

(SOS[) = ( S I  n [cosh(PJD) + S, sinh(@JD)]) tanh x I x  =o. 
111=1 

Carrying out the indicated differentiation and after some elementary algebra we arrive 
at the equalities (4) and ( 5 ) .  

Remark 1. Equations (4) and ( 5 )  can also be obtained from (3) directly using the 
definition of the random variable tanh(0.l Xljl=l Si)  and inserting projections over 
configurations, i.e. if all Sj  = 1 then insert nljlZl z ( l  +Sj ) ,  etc. 1 

Remark 2. Of course, equalities of this type hold in any dimension, for J s O  or 
complex J and for discrete spin systems. 

From equations (4) and ( 5 )  we now obtain an inequality of the form 

where ai is a sum of products of two-point functions. 
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Using Griffiths I1 on the second term of (4), i.e., (S8iSflk) 2 (S&)(sflk),  and noticing 
that B is negative, we get for d = 2 

Using Griffiths I1 on the second term of ( 5 )  ( B  < 0) and Newman’s inequality ((SP) S 

Z j  (S iSj ) (@’/dSj ) ,  F are polynomials with positive coefficients) on the third term of 
(51, we get 

(SiS$ksmSnSf ) 

( s 8 i ) ( s $ k s m s n )  + ( s $ j ) ( s $ k s m s n )  + ( s8 j s ,> ( s$$msn)  
+ ( s 8 m  )(SiSfikSn) f ( s 8 n  ) ( s i s $ k s m )  

and by Griffiths I ( (SA) s l), 

( s i s f i k s m s n )  ( s $ i ) + ( s ~ j ) + ( S 8 k ) + ( S 8 m ) + ( S f S n ) .  

Therefore we get for ( 5 )  

(SOSO 1 ( S ~ S , ) - I B I ( ~ O ( S ~ ~ > ( S ~ ~ > + ~ ( S ~ S S ) ( S ~ ~ ~ )  
li\=l 

+ 3(s84)(s f ik  ) + (s83>(s$k )) + c 5 S8i. 
l i l=l 

By bounding the resulting two-point function occurring in the previous results from 
below with the two-point function of a one-dimensional infinite chain (which follows 
from Griffiths 11), we arrive at 

where, 

for d = 2 :  

f o r d  = 3 :  Z ~ = A - I B I ( S $ ~ ) I D + ~ C  
dj = A  -IBl(SjSk)iD 

where (S$I,)lD = tanh’ pJ is the lower bound with 11 = Ik I = 1, j # k .  Evaluating 
numerically the value of T such that Zlj1=1 iij C 1, cii >O,  we obtain, by the sufficient 
condition ( l ) ,  the following upper bounds for T,. 

Theorem 4.  (a) d = 2; kTJJ s 3.013 99, d = 3; kT,/J s 5.423 15. 

We make some concluding remarks. 
(i) The identities (4)-(5) are lattice analogues of the formal equations of motion 

satisfied by the two-point Euclidean vacuum expectation of a limiting (Ising limit) q 4  
quantum field theory, i.e. 

(AH+m*) ( f l ,  q ( l ) q ( x ) W  = (0, q(Ndq4/dq)(x)W.  

For d = 2 the scaling limit exists and defines a Wightman field theory (Schor and 
O’Carroll 1982); it would be interesting to investigate the scaling limit of ( 4 ) .  The 
scaling limit equality is not to be confused with the non-linear partial differential 
equation obeyed by the scaling limit two-point function as obtained by Jimbo et a1 
(1980). For d > 4 possibly these equalities can be useful in making triviality statements 
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about field theories and/or mean-field statements about critical exponents (see Aizen- 
man 1981 and Frohlich 1982). 

(ii) In ordinary quantum mechanics, the imaginary time equation of motion is well 
defined, for example in one dimension we have 

m (d2/ds2) (h ,  x exp(-H,)xlLd = ($0, V ’ b )  exp(-H,IxtLo) 
where H = p 2 / 2 m  + V ( x )  -Eo is the Hamiltonian and lL0 is its ground state eigenfunc- 
tion with eigenvalue Eo. Such relations could possibly be exploited to analyse the 
spectrum of H. 

(iii) Equalities for ‘+boundary’ conditions which involve the magnetisation are 
obtained from (4) and ( 5 )  taking SI = 1. Note that the coefficients on the right-hand 
side are the same. The temperature where the magnetisation vanishes as determined 
from those inequalities is the same as given by theorem 4. 
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