Correlation equalities and some upper bounds for the critical temperature of Ising spin systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 161035
(http://iopscience.iop.org/0305-4470/16/5/021)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 17:05

Please note that terms and conditions apply.

Correlation equalities and some upper bounds for the critical temperature of Ising spin systems \dagger

F C Sá Barreto and ML O'Carroll
Departamento de Física-ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil

Received 16 July 1982

Abstract

Starting from correlation identities for Ising systems and using Griffith's and Newman's inequalities, upper bounds for the critical temperature are obtained which improve mean-field results.

Upper bounds \bar{T}_{c} for the critical temperature T_{c} for Ising and multi-component spin systems have been obtained by showing (for $T>\bar{T}_{\mathrm{c}}$) the exponential decay of the two-point function (Fisher 1967, Simon 1980, Brydges et al 1982). Series expansions in $\tanh \beta J$ and in βJ are analysed by Fisher (1967) and Brydges et al (1982) respectively, and spin correlation inequalities and their iteration are used by Brydges et al (1982), Lieb (1980) and Simon (1980). The inequality used by Lieb (1980) and its iteration can, in principle, be used to obtain a sequence of temperatures that converge to the critical temperature. However, as pointed out by Simon (1980), computation of successively better approximations to T_{c} require increasingly lengthier computations.

In this short note, for completeness, we give a simple proof of the mean-field bound for T_{c}. We then improve this bound for the classical Ising model as follows: starting from a two-point correlation function identity (Callen's identity) (Callen 1963) using Griffith's 1st and 2nd inequalities (Griffith I, II) (see Glimm and Jaffe 1981) and Newman's inequalities (Newman 1975) we establish the inequality

$$
\begin{equation*}
\left\langle\boldsymbol{S}_{0} \boldsymbol{S}_{l}\right\rangle \leqslant \sum_{\mid j=1} a_{j}\left\langle\boldsymbol{S}_{i} \boldsymbol{S}_{l}\right\rangle, \quad 0 \leqslant a_{i} \leqslant 1, \quad l \neq 0 \tag{1}
\end{equation*}
$$

for the two-point function $\left\langle\boldsymbol{S}_{0} \boldsymbol{S}_{l}\right\rangle$ which when iterated (see Simon 1980) implies exponential decay for $T>\bar{T}_{c}$. The upper bounds we obtain are lower than those obtained by Simon (1980) and Brydges et al (1982).

We first give a simple proof of the mean-field upper bound for T_{c}. We write the Hamiltonian for a classical lattice spin system as $H=-J \Sigma_{i, j \in \Lambda} S_{i} S_{j}$ where $J>0$ and the sum is over nearest-neighbour spins on the lattice Λ with the point $0 \in \Lambda$. We define the thermal average $\langle\ldots\rangle$ by

$$
\langle\ldots\rangle=Z^{-1} \sum_{\left\{\mathcal{S}_{i}\right\}}(\ldots) \mathrm{e}^{-\beta H}, \quad Z=\sum_{\left\{\mathcal{S}_{i}\right\}} \mathrm{e}^{-\beta H}
$$

where each S_{i} is restricted by $\left|S_{i}\right|=1$. We let ν denote the coordination number of

[^0]the lattice Λ and let $\langle\ldots\rangle_{\lambda}, 0 \leqslant \lambda<1$ denote $\langle\ldots\rangle$ with H replaced by $H_{\lambda}=$ $-J \lambda \Sigma_{i i=1} S_{0} S_{i}-J \Sigma_{i, j \neq 0} S_{i} S_{j} . T_{c}$ is defined by
$T_{\mathrm{c}}=\left[\inf T: \forall T^{\prime}>T \exists m\left(T^{\prime}\right)>0\right.$ and $\left.C\left(T^{\prime}\right)>0 \rightarrow\left\langle S_{0} S_{l}\right\rangle \leqslant C\left(T^{\prime}\right) \exp \left(-m\left(T^{\prime}\right)|l|\right)\right]$.
We have
Theorem 1. $T_{\mathrm{c}} \equiv \beta_{\mathrm{c}}^{-1}<J^{-1} \nu^{-1}$.
Proof. Integrating $\mathrm{d}\left\langle S_{0} S_{l}\right\rangle_{\lambda} / \mathrm{d} \lambda$ between $\lambda=0$ and $\lambda=1$ we obtain
\[

$$
\begin{align*}
\left\langle S_{0} S_{l}\right\rangle & =\int_{0}^{1} \mathrm{~d} \lambda \beta J \sum_{|j|=1}\left(\left\langle S_{0}^{2} S_{l} S_{j}\right\rangle_{\lambda}-\left\langle S_{0} S_{l}\right\rangle_{\lambda}\left\langle S_{0} S_{j}\right\rangle_{\lambda}\right) \\
& \leqslant \beta J \int_{0}^{1} \mathrm{~d} \lambda \sum_{i j=1}\left\langle S_{l} S_{j}\right\rangle_{\lambda} \leqslant \beta J \sum_{\mid j=1}\left\langle S_{l} S_{j}\right\rangle \tag{2}
\end{align*}
$$
\]

where we have used Griffith I (II) in the 1st (2nd) inequality of (2). Iteration of (2) (see Simon 1980) and noticing that $\sum_{|| |=1}=\nu$ completes the proof.

Remark. Using Griffith's 3 rd inequality, βJ can be replaced by $\tanh \beta J$ in (2) (see Simon 1980 and Brydges et al 1982).

We now recall Callen's identity (Callen 1963) and its proof for the two-point function.

Theorem 2. $\left\langle S_{0} S_{l}\right\rangle=\left\langle S_{l} \tanh \left(\beta J \Sigma_{|j|=1} S_{j}\right)\right\rangle$.
Remark. Callen's identity can be generalised to include magnetic fields and more general functions, i.e. can replace S_{l} by $f\left(\left\{S_{i}\right\}\right)$ where $S_{0} \notin\left\{S_{i}\right\}$ and $E_{i}=-\Sigma_{|j|=1} J S_{i}$ by $E_{i}=-\Sigma_{|j|=1} J S_{i}+h$.

Proof. Carrying out the sum over S_{0} in the numerator of $\left\langle\boldsymbol{S}_{0} \boldsymbol{S}_{l}\right\rangle$ we obtain

$$
\begin{align*}
\left\langle S_{0} S_{l}\right\rangle=Z^{-1} & \sum_{\left\{S_{i}\right\}, i \neq 0} S_{i} 2 \sinh \left(\beta J \sum_{|i|=1} S_{i}\right) \exp \left(\beta J \sum_{\substack{|m-n|=1 \\
m, n \neq 0}} S_{m} S_{n}\right) \\
= & Z^{-1} \sum_{\left\{S_{i}, i, i \neq 0\right.} S_{l} 2 \sinh \left(\beta J \sum_{|j|=1} S_{i}\right) \\
& \times\left[\sum_{S_{0}} \exp \left(\beta J \sum_{|a|=1} S_{0} S_{a}\right) / \sum_{S_{0}} \exp \left(\beta J \sum_{|a|=1} S_{0} S_{a}\right)\right] \exp \left(\beta J \sum_{m, n \neq 0} S_{m} S_{n}\right) \\
= & Z^{-1} \sum_{\left\{S_{l}\right\}} S_{l} \tanh \left(\beta J \sum_{|j|=1} S_{i}\right) \exp \left(\beta J \sum_{m, n} S_{m} S_{n}\right) \tag{3}
\end{align*}
$$

where we have noted that

$$
\left[\sum_{S_{0}} \exp \left(\beta J \sum_{|a|=1} S_{0} S_{a}\right)\right]=\left[2 \cosh \left(\beta J \sum_{|a|=1} S_{a}\right)\right]
$$

and that $S_{l} 2 \sinh \left(\beta J \Sigma_{|j|=1} S_{i}\right)$ is independent of S_{0}.

Specialising Callen's theorem to the case of a dimension $d=2,3$ cubic lattice we obtain correlation function identities as

Theorem 3. (a) For $d=2$

$$
\begin{equation*}
\left\langle S_{0} S_{l}\right\rangle=A \sum_{i}\left\langle S_{i} S_{i}\right\rangle+B \sum_{i<j<k}\left\langle S_{i} S_{i} S_{j} S_{k}\right\rangle \tag{4}
\end{equation*}
$$

where

$$
\begin{aligned}
& A=\frac{1}{8}[\tanh (4 \beta J)+2 \tanh (2 \beta J)] \\
& B=\frac{1}{8}[\tanh (4 \beta J)-2 \tanh (2 \beta J)] .
\end{aligned}
$$

(b) For $d=3$

$$
\begin{equation*}
\left\langle S_{0} S_{l}\right\rangle=A \sum_{i}\left\langle S_{i} S_{l}\right\rangle+B \sum_{i<j<k}\left\langle S_{i} S_{j} S_{k} S_{l}\right\rangle+C \sum_{i<j<k<m<n}\left\langle S_{i} S_{j} S_{k} S_{m} S_{n} S_{l}\right\rangle \tag{5}
\end{equation*}
$$

where

$$
\begin{aligned}
& A=\left(1 / 2^{5}\right)[\tanh (6 \beta J)+4 \tanh (4 \beta J)+5 \tanh (2 \beta J)] \\
& B=\left(1 / 2^{5}\right)[\tanh (6 \beta J)-3 \tanh (2 \beta J)] \\
& C=\left(1 / 2^{5}\right)[\tanh (6 \beta J)-4 \tanh (4 \beta J)+5 \tanh (2 \beta J)] .
\end{aligned}
$$

The sums over i, j, k, m, n are over the nearest neighbours of 0 to which we have given a numerical ordering.

Proof. Letting $E_{0}=-\sum_{i j i=1} J S_{j}$, Callen's identity can be written as

$$
\left\langle S_{0} S_{l}\right\rangle=\left\langle\left. S_{l} \exp \left(\beta E_{0} \mathrm{D}\right) \tanh x\right|_{x=0}\right\rangle
$$

where D is the differentiation operator $\mathrm{d} / \mathrm{d} x$ or as

$$
\left\langle S_{0} S_{l}\right\rangle=\left.\left\langle S_{l} \prod_{|j|=1}\left[\exp \left(\beta J S_{i} \mathrm{D}\right)\right]\right\rangle \tanh x\right|_{x=0}
$$

Using $S_{i}^{2}=1$ we have

$$
\left\langle S_{0} S_{l}\right\rangle=\left.\left\langle S_{l} \prod_{|j|=1}\left[\cosh (\beta J \mathrm{D})+S_{i} \sinh (\beta J \mathrm{D})\right]\right\rangle \tanh x\right|_{x=0} .
$$

Carrying out the indicated differentiation and after some elementary algebra we arrive at the equalities (4) and (5).

Remark 1. Equations (4) and (5) can also be obtained from (3) directly using the definition of the random variable $\tanh \left(\beta J \Sigma_{|j|=1} S_{j}\right)$ and inserting projections over configurations, i.e. if all $S_{j}=1$ then insert $\prod_{\mid j=1} \frac{1}{2}\left(1+S_{i}\right)$, etc.

Remark 2. Of course, equalities of this type hold in any dimension, for $J \leqslant 0$ or complex J and for discrete spin systems.

From equations (4) and (5) we now obtain an inequality of the form

$$
\left\langle S_{0} S_{l}\right\rangle \leqslant \sum_{|j|=1} a_{j}\left\langle S_{i} S_{i}\right\rangle
$$

where a_{j} is a sum of products of two-point functions.

Using Griffiths II on the second term of (4), i.e., $\left\langle S_{S} \boldsymbol{S}_{i} \boldsymbol{S}_{i} \boldsymbol{S}_{k}\right\rangle \geqslant\left\langle\boldsymbol{S}_{\boldsymbol{S}} \boldsymbol{S}_{i}\right\rangle\left\langle\boldsymbol{S}_{i} \boldsymbol{S}_{k}\right\rangle$, and noticing that B is negative, we get for $d=2$
$\left\langle S_{0} S_{l}\right\rangle \leqslant A \sum_{\mid i=1}\left\langle S_{i} S_{i}\right\rangle-|B|\left(\left\langle S_{1} S_{1}\right\rangle\left\langle S_{2} S_{3}\right\rangle+\left\langle S_{S} S_{1}\right\rangle\left\langle S_{2} S_{4}\right\rangle+\left\langle S_{1} S_{1}\right\rangle\left\langle S_{3} S_{4}\right\rangle+\left\langle S_{S} S_{2}\right\rangle\left\langle S_{3} S_{4}\right\rangle\right)$.
Using Griffiths II on the second term of $(5)(B<0)$ and Newman's inequality $\left(\left\langle S_{i} F\right\rangle \leqslant\right.$ $\Sigma_{j}\left\langle S_{i} S_{j}\right\rangle\left\langle\partial F / \partial S_{j}\right\rangle, F$ are polynomials with positive coefficients) on the third term of (5), we get
$\left\langle S_{i} S_{j} S_{k} S_{m} S_{n} S_{l}\right\rangle$

$$
\begin{aligned}
& \leqslant\left\langle\boldsymbol{S}_{\boldsymbol{N}} \boldsymbol{S}_{i}\right\rangle\left\langle\boldsymbol{S}_{i} \boldsymbol{S}_{k} \boldsymbol{S}_{m} \boldsymbol{S}_{n}\right\rangle+\left\langle\boldsymbol{S}_{\boldsymbol{k}} \boldsymbol{S}_{j}\right\rangle\left\langle\boldsymbol{S}_{i} \boldsymbol{S}_{k} \boldsymbol{S}_{m} \boldsymbol{S}_{n}\right\rangle+\left\langle\boldsymbol{S}_{i} \boldsymbol{S}_{j}\right\rangle\left\langle\boldsymbol{S}_{i} \boldsymbol{S}_{j} \boldsymbol{S}_{m} \boldsymbol{S}_{n}\right\rangle \\
& +\left\langle S_{i} \boldsymbol{S}_{m}\right\rangle\left\langle\boldsymbol{S}_{i} \boldsymbol{S}_{j} \boldsymbol{S}_{k} \boldsymbol{S}_{n}\right\rangle+\left\langle\boldsymbol{S}_{\boldsymbol{k}} \boldsymbol{S}_{n}\right\rangle\left\langle\boldsymbol{S}_{i} \boldsymbol{S}_{j} \boldsymbol{S}_{\boldsymbol{k}} \boldsymbol{S}_{m}\right\rangle
\end{aligned}
$$

and by Griffiths I $\left(\left\langle S_{A}\right\rangle \leqslant 1\right)$,

$$
\left\langle S_{i} S_{i} S_{k} S_{m} S_{n}\right\rangle \leqslant\left\langle S_{i} S_{i}\right\rangle+\left\langle S_{i} S_{j}\right\rangle+\left\langle S_{i} S_{k}\right\rangle+\left\langle S_{i} S_{m}\right\rangle+\left\langle S_{i} S_{n}\right\rangle .
$$

Therefore we get for (5)

$$
\begin{aligned}
\left\langle S_{0} S_{l}\right\rangle \leqslant A \sum_{|i|=1} & \left\langle S_{i} S_{l}\right\rangle-|B|\left(10\left\langle S_{k} S_{6}\right\rangle\left\langle S_{j} S_{k}\right\rangle+6\left\langle S_{k} S_{5}\right\rangle\left\langle S_{j} S_{k}\right\rangle\right. \\
& \left.+3\left\langle S_{l} S_{4}\right\rangle\left\langle S_{j} S_{k}\right\rangle+\left\langle S_{l} S_{3}\right\rangle\left\langle S_{j} S_{k}\right\rangle\right)+C 5 \sum_{|i|=1} S_{i} S_{i} .
\end{aligned}
$$

By bounding the resulting two-point function occurring in the previous results from below with the two-point function of a one-dimensional infinite chain (which follows from Griffiths II), we arrive at

$$
\left\langle S_{0} S_{l}\right\rangle \leqslant \sum_{|j| \neq 1} \bar{a}_{j}\left\langle S_{i} S_{j}\right\rangle
$$

where,

$$
\begin{array}{ll}
\text { for } d=2: & \bar{a}_{j}=A-|B|\left\langle S_{i} S_{k}\right\rangle_{1 D} \\
\text { for } d=3: & \bar{a}_{j}=A-|B|\left\langle S_{i} S_{k}\right\rangle_{1 D}+5 C
\end{array}
$$

where $\left\langle S_{j} S_{k}\right\rangle_{1 D}=\tanh ^{2} \beta J$ is the lower bound with $|j|=|k|=1, j \neq k$. Evaluating numerically the value of T such that $\sum_{\mid j=1} \bar{a}_{j} \leqslant 1, \bar{a}_{j}>0$, we obtain, by the sufficient condition (1), the following upper bounds for T_{c}.

Theorem 4. (a) $d=2 ; k T_{\mathrm{c}} / J \leqslant 3.01399, d=3 ; k T_{\mathrm{c}} / J \leqslant 5.42315$.
We make some concluding remarks.
(i) The identities (4)-(5) are lattice analogues of the formal equations of motion satisfied by the two-point Euclidean vacuum expectation of a limiting (Ising limit) φ^{4} quantum field theory, i.e.

$$
\left(\Delta_{x}^{\mathrm{E}}+m^{2}\right)(\Omega, \varphi(l) \varphi(x) \Omega)=\left(\Omega, \varphi(l)\left(\mathrm{d} \varphi^{4} / \mathrm{d} \varphi\right)(x) \Omega\right)
$$

For $d=2$ the scaling limit exists and defines a Wightman field theory (Schor and O'Carroll 1982); it would be interesting to investigate the scaling limit of (4). The scaling limit equality is not to be confused with the non-linear partial differential equation obeyed by the scaling limit two-point function as obtained by Jimbo et al (1980). For $d>4$ possibly these equalities can be useful in making triviality statements
about field theories and/or mean-field statements about critical exponents (see Aizenman 1981 and Frohlich 1982).
(ii) In ordinary quantum mechanics, the imaginary time equation of motion is well defined, for example in one dimension we have

$$
m\left(\mathrm{~d}^{2} / \mathrm{d} s^{2}\right)\left(\psi_{0}, x \exp \left(-H_{s}\right) x \psi_{0}\right)=\left(\psi_{0}, V^{\prime}(x) \exp \left(-H_{s}\right) x \psi_{0}\right)
$$

where $H=p^{2} / 2 m+V(x)-E_{0}$ is the Hamiltonian and ψ_{0} is its ground state eigenfunction with eigenvalue E_{0}. Such relations could possibly be exploited to analyse the spectrum of H.
(iii) Equalities for '+boundary' conditions which involve the magnetisation are obtained from (4) and (5) taking $S_{l}=1$. Note that the coefficients on the right-hand side are the same. The temperature where the magnetisation vanishes as determined from those inequalities is the same as given by theorem 4.

References

Aizenman M 1981 Phys. Rev. Lett. 471
Brydges D, Frohlich J and Spencer T 1982 Commun. Math. Phys. 83123
Callen H B 1963 Phys. Lett. 4161
Fisher M 1967 Phys. Rev. 162480
Frohlich J 1982 Nucl. Phys. B 200281
Glimm J and Jaffe A 1981 Quantum Physics (New York: Springer-Verlag)
Jimbo M, Miwa T and Sato M 1980 Mathematical Problems in Theoretical Physics ed K Osterwalder Lecture
Notes in Physics 116 (New York: Springer-Verlag)
Lieb E 1980 Commun. Math. Phys. 77127
Newman C 1975 Zeitschrift für Wahrscheinlichkeits Theorie 3375
Schor R and O'Carroll M 1982 Commun. Math. Phys. 84153
Simon B 1980 Commun. Math. Phys. 77111
Simon B and Aizenman M 1980 Commun. Math. Phys. 77137

[^0]: † Partially supported by CNPq and FINEP (Brazilian Agencies).

